

Dwingeloo goes SDR

Paul Boven PE1NUT

On my Kitchen Table (2008)

Boxed (2010)

Ethernet

Inputs

JTAG (Parallel) Fuse

Mains

Clock

Signal Chain

Receiver

Backend Clock

CAM 101

Backend Downconverter

II

- 17

- Antenna signal or IF signal is digitised at high rate
- Demodulation or measurement is done in software
- Advantages: Flexibility, stable and steep filters
- Disadvantages: Computational Requirements

• Differences in:

- Frequency Coverage
- Bandwidth / Sample Rate
- Sensitivity
- Price

Some SDRs

- Free and open source development system for signal processing • Radio tinkering with Python and/or flowgraphs
- Available on most operating systems

GnuRadio Blocks

UHD: USRP Source

command

Samp Rate (Sps): 3.2M Ch0: Center Freq (Hz): 100M Ch0: Gain Value: 53 Ch0: Antenna: RX2

FFT

FFT Size: 1.024k Forward/Reverse: Forward Window: window.blackmanhar... Shift: Yes Num. Threads: 1

- Blue: Complex, IQ data, floating point
- Orange: Float, (32 bit)
- Green: Int, 32 bit
- Yellow: Short, 16 bit
- Purple: Char/UChar/Byte, 8 bit
- Vector: List of samples grouped together Darker colour shade

'Hello World'

UHD: USRP Source Samp Rate (Sps): 10M Ch0: Center Freq (Hz): 100M Ch0: Gain Value: 30 Ch0: Antenna: RX2

QT GUI Frequency Sink FFT Size: 1.024k Center Frequency (Hz): 100M Bandwidth (Hz): 10M

UHD: USRP Source Samp Rate (Sps): 10M Ch0: Center Freq (Hz): 100M command Ch0: Gain Value: 30 Ch0: Antenna: RX2

- Good for high dynamic range (log scale)
- Low CPU impact (runs only 10 times per second)
- This example: only 0.1% of samples get used
 - 1024 bins, 10 Hz, 10MS/s
- Poor sensitivity
- Long time averaging required

FFT Display

QT GUI Frequency Sink FFT Size: 1.024k Center Frequency (Hz): 100M Bandwidth (Hz): 10M

FFT all the samples

- Resolution: 20MHz / 4096 = 5 kHz
- 1% power uncertainty (10,000 power samples for each bin)
- Update rate is samp_rate / bins / integrations = 2s
- Due to block-based processing: display lag is tens of seconds !

- Repeat the output of the integrator
- Only happens every 2 seconds anyway
- Flushes buffers so Vector Sink updates immediately
- Also introduced normalisation, after integration

- Low (zero) weight for samples at window edge Loss of sensitivity, as samples are thrown away

Increase in CPU resources scales with overlap factor !

Weight Overlap Add

- Sinc window (perhaps multiplied with e.g. hamming)
- More overlaps allows less truncated sinc(x)
 - Better frequency box shape
 - Worse time resolution

Source: https://arxiv.org/pdf/1607.03579.pdf

h e.g. hamming) | sinc(x)

- sinc_sample_locations: np.arange(-np.pi*4/2.0, np.pi*4/2.0, np.pi/chans)
- sinc: np.sinc(sinc_sample_locations/np.pi)
- custom_window: sinc*np.hamming(4*chans)
- Top to bottom: custom_window[-chans:], [2*chans:3*chans], [chans:2*chans], [0:chans]
- Based on: http://wvurail.org/dspira/labs/05/

- 2300s on-source, 2400s off-source (100s integrations)
- Red-shift: 657km/s (3.1 MHz)
- Distance: 30 (±6) Million Lightyears

M74 / NGC 628

ESO/PESSTO/S. Smart

- Automatically record scans of 1 minute
- Perform folding (without de-dispersion) with above flowchart
- Read start time (ns resolution) from metadata

Pulsar Flowchart

B0329+54

2018-06-28 1330 MHz 10MHz wide No de-disp. 4 hour obs. 188 records, 1 minute each

P=0.7144921s

- 2.5 Ms/s IQ data
- bit quantised • 1
- Compatible with SETI@HOME (Berkely) format and tools
- CAMRAS is launching a SETI project

Astronomy and Resolution $\theta \approx 1.2 \ \lambda/D$ ($\lambda = wavelength$, D = diameter)

• $\lambda = 6$ cm (5 GHz) • D = 25 m • $\theta = 600$ arcsecond

Wanted: Dish of 240km ?

- $\lambda = 600$ nm (visible light) • D = 2.4 m • $\theta = 0.06$ arcsecond

Interferometry - VLBI

- Very Long Baseline Interferometry
- Highest Resolution in Astronomy
- Needs very high clock stability:
 - H-maser at every dish
- A virtual dish the size of the Earth
 - And beyond...
- Data recording and transport:
 - 2 bit samples for efficiency
- 1Gb/s or more per dish

Image by Paul Boven (boven@jive.eu). Satellite image: Blue Marble Next Generation, courtesy of Nasa Visible Earth (visibleearth.nasa.gov).

Maps the two MSB (signed) to the two LSB (offset)

White Rabbit An open protocol/standard for distributing time and frequency, accurate to 1ns over 10km, to 1000s of nodes

Initial design at CERN for beam control of the LHC

- ASTERICS project, CLEOPATRA work-package:
- Improvements to add even more stability and longer distance:
 - 165km test, H-maser at
 - WSRT connected to Dwingeloo telescope using shared fiber

ASTERICS is a project supported by the European Commission Framework Programme Horizon 2020 Research and Innovation action under grant agreement n. 653477

Ettus X310

- Dual 10Gb/s SFP+
- Big FPGA
- Two TwinRX modules
 - 10 MHz 6GHz
 - Each 2x 80 MHz Bandwidth

Usage:

- VLBI
 - This will require RFNOC
 - H-Maser clock via White Rabbit
 - Part of H2020 Asterics project
- All our usual observations, and much more

New Backend

Upcoming Work

- Dig 300m fiber
 - Connect Astron to DT
- 510m fiber, 144 strands
- Connect H-Maser to DT
- Firmware for real-time VLBI

Questions?

